Driver Assistance Systems (DAS)

Short Overview László Czúni University of Pannonia

What is DAS? DAS: electronic systems helping the driving of a vehicle ADAS (advanced DAS): the collection of systems and subsystems on the way to a fully automated HUD Rear/Side Mirrors Collision driving system • IP Communication Avoidance Audio Interface Bus Processor Chimes/Voice Radio Contro **Tactile** Seat Vibration Brake Pulse Vision-based DAS: Steering Shake . Resistive Steering Vision DAS using System optical sensors Forward Radar

Rear

Detection

Sensor

Vehicle Sensors

Speed

Steering

GPS/Map

Inertial

Side

Detection

Senso

Sensor

· Throttle

Transmission

Active Vehicle Control

Brakes

Steering

Purposes of DAS

Economy:

- Lower fuel consumption
- Lower cost of ownership
- Less polution of environment

Comfort:

- Easier driving
- Information about traffic
- Route planning
- Safety:
 - Lower risk of accidents
 - Less serious accidents

Lower Consumption by Navi-Matic (Aisin AW)

More economic gear selection based on digital map information

Regulations

The European Union's Transport Policy 2011 – 2020

- reduce fatalities on European roads by half over the next decade.
- introduces a focus on the reduction of severe injuries;

The EU Safety Regulation makes ESP mandatory as of November 2014 for all vehicle classes.

Road Fatality Trends in High-income Countries

Road Fatalities Worldwide

Road fatalities per 100,000 inhabitants per year, 2000, Global Status Report On Road Safety, WHO

Some Statistics

The main cause of 90% of traffic accidents is human error (German Federal Statistical Office, 2007).

Accidents with physical injuries can be attributed either to inappropriate speed (16%) or to insufficient stopping distance (12%).

40% of all people killed in road traffic were due to unadapted speed (2010, Germany)

Accidents is Complex Traffic Situations

What are the real causes behind human errors?

Unseen obstacles, misunderstood information, too long reaction time, alcohol...?

Traffic Psychology

Traffic psychology is primarily related to the study of the behavior of road users and the psychological processes underlying that behavior (Rothengatter, 1997)

Important question is the relationship between

- behavior of drivers
- cars' features and equipments
- environment
- accidents

Example 1: Reaction time of drivers and its effect on breaking distance

		figures						
		Mos	st sible	2% (only 2% are faster)		98% (only 2% are		B
				ure fuscer)		slower)		X
	Reaction							27
	Without view turning	0.64	↓	0.36 0.68		0.78 1.33 1.48		0 V
	With view turning 0.5-5°	1.12	2					
	With view turning $> 5^{\circ}$	1.25 0.05 0.17		0.77				N.
	Response time			0.03 0.14		0.06 0.18		Z
2	Build-up time							FI
	action time (s) and		0,1	0,2	0,5	0,67	1	1,5
istance (m) at 100km			2,778	5,556	13,89	18,6	27,78	41,67

Example 2: Quality measure for lane departure alert systems

Benificial reaction time

Driver's reaction time

Time the driver and car needs for correction

DAS warning Car would leave the lane DARPA (Defense Advanced Research Projects Agency)

prize competitions for driverless vehicles

2004: only 12km of the desert route succeeded
2005: 5 cars ran the whole 212km off-road route

2007: 6 teams succeeded the 96km urban area course, the winner with 23km/h average speed

Tatran Racing, 1st Place of Urban Challenge 2007

A description of the sensors incorporated onto the Tartan Racing Robots

Sensor	Characteristics
Applanix POS-LV 220/420 GPS / IMU	 sub-meter accuracy with Omnistar VBS
	corrections
	 tightly coupled inertial/GPS bridges GPS-outages
SICK LMS 291-S05/S14 Lidar	 180° / 90° x 0.9° FOV with 1° / 0.5° angular
	resolution
	80m maximum range
Velodyne HDL-64 Lidar	 360° x 26° FOV with 0.1° angular resolution
	 70m maximum range
Continental ISF 172 Lidar	 12º x 3.2º FOV
	 150m maximum range
IBEO Alasca XT Lidar	 240° x 3.2° FOV
	 300m maximum range
Ma/Com Radar	• 80º FOV
	 27m maximum range
Continental ARS 300 Radar	 60º / 17º x 3.2º FOV
	60m / 200m maximum range
MobilEye Vision System	• 45º x 45º FOV
	 ~35m effective range

History: first commercial appearances

1970s - ABS (Anti-lock Braking System - Bosch)
 1990s - ESC/ESP (Electronic Stability Control/Program - Bosch)
 Early 1990s

- Park Distance Control
- GPS based navigation systems
- 1995 ACC (Adaptive Cruise Control Mitsubishi)
- 2001 Lane keeping support (Nissan)
- 2002 Night Vision (Toyota)
- 2003 Intelligent Parking Assist System (Toyota)
 - 2003 Collision Mitigation Brake System (Honda)
- 2005 Blind Spot Detection (Volvo)
- 2007 Around View Monitor (Nissan)
- 2008 Traffic Sign Recognition (MobilEye and Continental)
- 2009 Adaptive Light Control (Mercedes)
- 2009 Attention Assist Driver drowsiness detection (Mercedes)
- 2011 Pedestrian Detection (Volvo)

Sensors for DAS

Rotation (yaw) and acceleration sensors Wheel speed sensor Steering wheel angle sensor Mono or Stereo Camera In focus Infra camera vision-base Ultrasound Radar Lidar GPS (incl. map based data) Combination of these...

Sensors for DAS

Night vision (infra camera) Around view monitor (camera) Collision warning (radar, lidar, and camera) Object (pedestrian) detection (camera) Lane departure alert, Lane change assistance, Lane keeping - Automatic steering (camera) Adaptive light control (camera) Adaptive cruise control (radar and camera) Parking systems (radar, ultrasound and camera) Traffic Sign recognition (camera) Blind spot detection (radar/camera) Driver drowsiness detection (steering and camera)

Sensor ranges

Vision-based DAS

Pros:

Rich information source
Can directly enhance visual sensing
Wide field of application

Cons:
 Expensive (special cameras, processors)
 High computational load (high power consumption)

Night Vision

IR sensors

- Active (Mercedes), ~150m
- Passive (BMW), ~300m
- Combined with motion (pedestrian) detection (Night Vision Assist Plus)

A better view for the driver...

360 degree view to help parking
 Integration of images of 4 (or more) cameras

 Image geometry transformations
 Warping
 Homography

Bird view of the car from the cockpit of an Infinity

Homography (H) Can be applied for plain objects Transformation from Camera 1 to Camera 2: $\mathbf{X}_2 = H\mathbf{X}_1 \quad \mathbf{X}_1, \mathbf{X}_2 \in \mathbb{R}^3$ Using homogeneous coordinates: $\lambda_1 \mathbf{x}_1 = \mathbf{X}_1, \quad \lambda_2 \mathbf{x}_2 = \mathbf{X}_2$ By image coordinates: $\lambda_2 \mathbf{x}_2 = H \lambda_1 \mathbf{x}_1$ H is estimated by calibration

How DAS understands the visual information?

Use only 2D information?
Classical 2D pattern recognition
Use motion information?
Consider the ego-motion of the camera
Image motion greatly depends on the 3D structure of the scene
or combine the two approaches...

Boosted classifier for car detection

Large pool of weak classifiers
AdaBoost to select and combine weak classifiers

Paul Viola and Michael Jones, "Robust Real-time Object Detection" International Journal of Computer Vision (IJCV), 2004.

David C. Lee, and Takeo Kanade. "Boosted Classifier for Car Detection." 2007.

Input image

Three filters selected by AdaBoost

Boosted classifier for car detection

Larg Ada clas

Relatively Internation

David C. Lee, and Tal "Boosted Classifier fc

Input image 2D information is not reliable

etection

Three filters selected by AdaBoost

Pedestrian detection

Paper	Approach		Description				
Papageorgiou	Shape		Based on local multiscale oriented intensity differences using Haar wavelet				
11CA00[2]	Cla	Paper	Objective	Sensors	Approach	Description	
Abramson IV04	Sł	Broggi IV04 [16]	Detection	FIR	Shape	Detects warm symmetric objects with specific size and ratio at multiple resolutions.	
Hashiyama C- SMC03 [7]	M	Fang VT04 [17]	Detection	FIR		Shape independent approach using horizontal and vertical projection profiles. Classification based on multi-dimensional histogram, inertia, contrast features.	
Viola ICCV03	M	Meis IV04 [18]	Detection	FIR	Head detection	Statistical approach for pixel classification for head detection. Comparison with classifier for body detection.	
Havasi 04 [9]	Sł	Xu ITS05 [19]	Detection, tracking	FIR	Shape	Uses SVM for detection, Kalman filter and mean shift for tracking pedestrians. Output of road-detection module also used for validation.	
Shashua 04 [10]	Sł	Liu VT04 [20]	Detection	FIR	Stereo, motion	Detects objects with motion not consistent with background without explicit ego-motion computation. Works well with dominant translation but small rotation of camera.	
Zhao ITS00 [11]	St ne	Tsuji ITS02 [21]	Detection, collision prediction	FIR	Stereo, motion	Design of overall system. Discusses configuration, coordinate systems, simple IR based detection, tracking, computation of relative motion vectors, and conditions for collision judgment.	
Gavrila IV04 [12] Hilario 05 [13]	St	Fang 03 [22]	Detection comparison	Visible, FIR	Feature-based	Compares use of visible and IR sensors. Introduces multi-dimensional feature-based segmentation and classification. Proposes novel features for segmentation to take advantage of unique properties of IR.	
Gandhi ICIP05	St	Milch [23]	Detection	RADAR, monocular vision	Time-of-flight, shape	Target-list is generated using RADAR. These are verified by vision using flexible shape models trained from manually extracted pedestrians.	
Lombardi IV04 [15]	Sl he	Scheunert IV04 [24]	Tracking	FIR, LASER scanner	Time-of-flight, hot object detection	LASER scanner detection using 1 st and 2 nd derivatives w.r.t. azimuth angles. IR detection using brightness and orientation. Uses Kalman filter for sensor fusion.	

Tarak Gandhi and Mohan M. Trivedi: Pedestrian Collision Avoidance Systems: A Survey of Computer Vision Based Recent Studies, IEEE International Transportation Systems Conf., 2006

Motion Detection

Find changing areas in videos

- In case of moving cameras everything seems to move
- Motion patterns greatly depend on the camera ego-motion and on the 3D structure of the scene

3D Velocity and 2D Velocity

Motion equation if the camera moves...

- $\mathbf{u} \in \mathbf{R}^2$: image motion
- $\mathbf{T} \in \mathbf{R}^3$: translation of the camera
- $\Omega \in \mathbb{R}^3$: rotation of the camera

Image velocity in case of plains

Image points belong to plain objects in 3D space

$$u_{h} = \frac{1}{fd}(a_{1}x^{2} + a_{2}xy + a_{3}fx + a_{4}fy + a_{5}f^{2})$$
$$u_{v} = \frac{1}{fd}(a_{1}xy + a_{2}y^{2} + a_{6}fy + a_{7}fx + a_{8}f^{2}).$$
$$u_{v} = -d\Omega_{v} + T_{v}n, \qquad a_{2} = d\Omega_{v} + T_{v}n$$

$$a_{3} = T_{z}n_{z} - T_{x}n_{x}, \qquad a_{4} = d\Omega_{z} - T_{x}n_{y},$$

$$a_{5} = -d\Omega_{y} - T_{x}n_{z}, \qquad a_{6} = T_{z}n_{z} - T_{y}n_{y}$$

$$a_{7} = -d\Omega_{z} - T_{y}n_{x}, \qquad a_{8} = d\Omega_{x} - T_{y}n_{z}.$$

The main task is to find, by optimization, the best *a_i* parameters fitting to observations.

Optical Flow Estimation

Optical flow is an estimation of motion field
Optical flow strongly correlates to the projection of real 3D motion
Calculation is based on intensity conservation:

 $f(x, y, t) = f(x + u_v, y + u_h, t + 1)$

Several approaches are available: Block matching Horn and Schunk – Lucas and Kanade

Independent Motion Detection

It can be done with a single camera
Assuming majority principle:

Some image model is assumed
Most points are "normal" background points
Outliers belong to independently moving

objects (foreground points)

Ego-motion removal

Find correspondence of image points in consecutive frames
Find the proper transformation between images (affine, perspective or linear models)
Apply transformation and make frame differencing

2.

3.

Compensated image difference

Frame tFrame t+1Normal differenceCompensated difference

Boyoon Jung and Gaurav S. Sukhatme, Detecting Moving Objects using a Single Camera on a Mobile Robot in an Outdoor Environment, 8th Conf. on Intelligent Autonomous Systems, 2004

Object tracking

Compensated difference image contains too much noise
Particle/object tracking applied to find relevant moving points/objects

Input frame

Particles tracked

Gaussian fitted

Boyoon Jung and Gaurav S. Sukhatme, Detecting Moving Objects using a Single Camera on a Mobile Robot in an Outdoor Environment, 8th Conf. on Intelligent Autonomous Systems, 2004

 $\forall x: \begin{cases} x \leq x_0: & u_y(x) \leq u_{y,\Omega}(x_0) = u_y(x_0) \\ x \geq x_0: & u_y(x) \geq u_{y,\Omega}(x_0) = u_y(x_0) \end{cases}$

Drawback: needs large number of vectors

Sándor Fejes and Larry S. Davis: Detection of Independent Motion Using Directional Motion Estimation, Computer Vision and Image Understanding, Volume 74, Issue 2, 1999, Pages 101-120

100

150

200

250

300

х

350

Simple Collision Detection

 t_0

ΓL

l(t)

f

D(t)

 D_0

• Object of height L moves with constant velocity v

The image of the object has size l(t)
It will crash with the camera at time:
D(t) = D_o - vt = 0
Time to Collide: τ = D_o/v

l(t)

But what is the height of objects? (systems should not warn on patterns of the road surface)

Environment Discovery and Recognition

Image object classification based on segmentation:

 Oversegmentation of image
 Generating feature descriptors for image segments
 Classification of segments

Humans vs. Machines

"The best of both worlds"

Human strengths	Strengths of technical systems	
 Flexibility to respond to the situation as required 	 No susceptibility to fatigue, stress or distraction 	
 Rapid decision-making, even in highly complex situations 	 Objective measuring and assessment of physical values such as distance 	
- Forward-thinking responses	and relative speed	
 Rapid interpretation of situations 	 Fast pre-programmed reactions with high level of precision 	
 Strongly developed ability to improvise 	 Precise and reliable repetition of pre-defined processes 	
 Instantaneous ethical assessment of situations 		

Driver-vehicle-environment triangle

Source: BMW

Potential Problems with DAS

Complexity of cockpit and handling
Negative effect on driving skills
Excessive reliance on ADAS
Decreasing general driver alertness and systems imperfection can increase risks

Conclusions

Human errors can be reduced significantly Knowledge of human behaviour and psychology is necessary Wide diversity of solutions exists Intelligent systems: Understanding of complex traffic environment and situation is necessary

Images, graphs and information originate from:

- Urmson, C. et al. Tartan Racing: A Multi-Modal Approach to the DARPA Urban Challenge, *April* 13, 2007
- Sándor Fejes and Larry S. Davis: Detection of Independent Motion Using Directional Motion Estimation, Computer Vision and Image Understanding, Volume 74, Issue 2, 1999, Pages 101-120
- Boyoon Jung and Gaurav S. Sukhatme, Detecting Moving Objects using a Single Camera on a Mobile Robot in an Outdoor Environment, 8th Conf. on Intelligent Autonomous Systems, 2004 Tarak Gandhi and Mohan M. Trivedi: Pedestrian Collision Avoidance Systems: A Survey of Computer Vision Based Recent Studies, IEEE International Transportation Systems Conf., 2006
- W. Uhler, H.-J. Mathony, and P. Knoll, "Driver assistance systems for safety and comfort," Robert Bosch GmbH, Driver Assistance Systems, Leonberg, EU-Projekt EDEL im 5. Rahmenprogramm, edel-eu.org, 2003.
- BMW Group driver assistance systems. BMW Group publications, 2008

- F. Kücükay & J. Bergholz, Driver Assistant Systems, Institute of Automotive Engineering, TU Braunschweig, 2004
- GLOBAL STATUS REPORT ON ROAD SAFETY, Department of Violence & Injury Prevention & Disability (VIP), WHO, 2009
- Maria Staubach, Factors correlated with traffic accidents as a basis for evaluating Advanced Driver Assistance Systems, Accident Analysis and Prevention 41 (2009) 1025–1033
 - Karel A. Brookhuis, Dick de Waard and Wiel H. Janssen, Behavioural impacts of Advanced Driver Assistance Systems—an overview, EJTIR, 1, no. 3 (2001), pp. 245 253
 - Hucker Zsolt, Classification of traffic images, Diploma Thesis, University of Pannonia, 2009

Abstract

Driver Assistance Systems (DAS) are becoming very popular in today's commercial vehicles. Comfort, safety and environmental considerations require the effective use of a great variety of sensors and signal processing technologies. In the lecture an overview is given about the differen DAS applications including the theoretical background of video based systems. Cameraindependent motion detection and obstacle detection, as the basis of several functions, are also discussed.